
FTO-TT 63-311r~n4og 541
TRANSLATION

SUBLIMATION OF A BLUNT BODY IN THE VICINITY OF THE
STAGNATION POINT IN PLANE AND AXISDYMETRICAL FLOW

OF A GAS MIXTURE

BY

ILl G. A. Tirskiy

FOREIGN TECHNOLOGY
DIVISION

AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE
00410

FOHI
DC,

; .. JUL 25 19W

171 sv

4A



UNEDITED ROUGH DRAFT TRANSLATION

SUBLIMATION OF A BLUNT BODY IN THE VICINITY OF THE
STAGNATION POINT IN PLANE AND AXISYNMETRICAL FLOW
OF A GAS MIXTURE.

By: 0. A. Tirskiy

English Pages: 29

Source: Russian periodical, Zhurnal vychislitellnoy
matematiki i matematicheskoy fLiziki, Vol. I,
No. 5, 1961, pp. 884-902

T-80
SOV/2o8-61-1-5-7/7

THIS TRANSLATION IS A RENDITION OF THE OR101-
HAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR
EDITORIAL COMMENT. STATEMENTS OR THEORIES PREPARED STe
ADVOCATED Ot IMPLIED ARE THOSE OF THE SOURCE
AND DO NOT NECESSARILY REFLECT THE POSITION TRANSLATION SERVICES SIANCH
O OPINION OF THE POREIGN TECHNOLOGY DI- FOREIGN TECHNOLOGY DIVISION
VIN. WP.APS, OWL

FTDiT 12 +2+4  -DO 2~4 May 19 63

P



SUBLIMATION OF A BLUNT BODY IN THE VICINITY OF THE

STAGNATION POINT IN PLANE AND AXISYMMETRICAL FLOW

OF A GAS MIXTURE

G. A. Tirskiy
(Moscow)

The problem of the sublimation of a body in the vicinity of the

stagnation point was examined in an earlier work [1], where a numerical

solution was carried out for the case of quasistationary "adiabatic"

(disregarding heat transfer into the body) boiling of solid carbon

dioxide in an axisymmetrical case where the Mach number of the incident

flow was 6.2. However, the conditions for attaining such a maximum

regime of sublimation were not obtained in the work and no solution

was given which permitted the calculation of the sublimation of bodies

with other physical properties under arbitrary flow conditions.

A simplified analysis of the sublimation of a solid at a given

sublimation temperature Tw has been presented [2] which is based on

the method of integral relationships. This case also corresponds to

the "boiling" of a solid since during sublimation, the temperature

prior to boiling temperature on the vaporizing surface is unknown and

must be determined while solving the problem.
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In the present article we obtained an accurate solution (solution

of the type of a uniformly propagating wave ) of the problem of

equilibrium and nonequilibrium sublimation of a blunt body in the

stagnation region with an arbitrary dependence of the physical prop-

erties of the body on temperature.

.For a Prandtl number a = 0.7; 1 and a Schmidt number Sc = 1 the

solution was obtained numerically. By means of asymptotic integra-

tion a solution was also obtained for arbitrary a and Sc > 0.5. It

was demonstrated that if the coefficient of accomodation f > 0.1 then,

with sufficient accuracy for application, vaporization of the body will

proceed according to diffusion kinetics (equilibrium vaporization)

for u. 103 m/sec, when f < 0.1 nonequilibrium vaporization must be

taken into account.

The necessary and sufficient condition under which boiling at the

sublimation front takes place was obtained (7). When boiling is

attained the sublimation rate and the mass velocity of sublimation are

in a final form (Eqs. 7.4 and 7.5).

The temperature profile in the body for an arbitrary dependence

of thermophysical properties of the body on temperature are found in

quadratures. The calculation of any specific problem in the general

case reduces to a solution of a system of three finite equations for

the determination of concentration, temperature at the vaporization

fr6nt, and rate of sublimation.

1. Statement of the Problem

If a mixture of gas flows past a solid body with a vapor partial

pressure of the body in the incident flow lower than the pressure of

the saturated vapors at the body surface temperature and if the sur-

face temperature is lower than the temperature of the triple-point
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of the phase diagram, then the body will sublimate. For this purpose

we will work out for the sublimation front, the appropriate tempera-

ture and mixture composition which, like the position of the sublima-

tion front, are not known beforehand and must be determined while

solving the problem.

The process of sublimation of a multicomponent body must be con-

sidered as a simple heterogeneous chemical reaction with the stoichio-

metric equation

k-I k-I

where A A are the chemical symbols corresponding to the solid andi
gaseous components; v v are the stoichlometric coefficients of the

solid and gaseous components respectively; No is the number of com-

ponents in the solid phase; and N' is the number of , _::ponents pro-

dulced during sublimation of the body (for example, during the vaporiza-

tion of Si02 a four-component ion vapor of Si02 , SiO , 02 and 0 is

formed [3]).

The mass concentrations cis (i = 1, ..., NI) of the gaseous pro-

ducts approaching the sublimation surface from the side of the solid

phase are associated with N, by the equation
N'.Cis --- .C 'rN ' ".

v 1 M 1  VN. Als. k-i

where Mi is the molar mass of the i-th component. Hence the composi-

tion of the gaseous products produced by vaporization of the body will

be
Ci -. .i ...... V.

V AlI
,-1 (1.2)

Then the problem of a stationary regime of sublimation in the stagna-

tion line (plane case) or in the stagnation region (axisymmetrical case)

PTD-T-T-63-311/1+2' -3-
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of a blunt body placed in a stationary gas flow consisting of N = N' +

+ N" components leads to the solution of a system of equations of a

nonstationary boundary layer for a multicomponent gas mixture:

: . u"-) - 9 = 0. n,- 1. 2; (1.3)
U + O 3 1 du

.p(m. -U + V pDpx= ,) (1.5)

Pri(c!U+ ac *) + ~ -- + (Lc' -1). N,~ j;(.)

* N ckN x%.,,= ,nr . h= AJ,:,.= y.C (h; - h4. = + h0; (1.7)
k-I k-I k-i

, N N

h: crtT, h= c h,.h =ciT, eP= 'Y fkCpt h _
A- -I k-I

Le •, : pclD ,I-- =

together with the equation of thermal conductivity in the solid body

8,, 8 .OaT
Pico O , P.C.= p,.^N(T)), X, = XL(T). (1.8)

Here x, y are the coordinates associated with the body along and

normal to the initial surface of the body respectively; u and v are

the components of the velocity vector with respect to x and y

respectively; p is the density; p - pressure; T and T, - temperature of

the gas and body; ci - mass concentration of the i-th component of

the mixture; h~ h + h c T + h0 ; and c - specific partial
th mitre i  hi + h i : p Pi

enthropy and specific heat for constant pressure of the i-th component

respectively; h° - "zero enthalpy" of the i-th component [4]; p., X,

D 12 - coefficients of viscosity, thermal conductivity and diffusion

of the mixture; R - universal gas constant; p,, c,, X, - density,

heat capacity, and coefficient of thermal conductivity of the solid

body; L(T,) and N(T,) - given functions of temperature.
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It is easy to show that in an approximation of the boundary-layer

theory a term with baro diffusion drops out of the equations of dif-

fusion (1.5) and the equation of energy (1.6).

When writing equations (1.5)-(1.7) we must also assume, in addi-

tion to the usual assumptions of boundary-layer theory in the stagna-

tion region that all of the Maxwellian diffusion coefficients are

equal (for a binary mixture this supposition is satisfied exactly),

that the effect of thermal diffusion is small, and that the mixture is

ideal. The equation of thermal conductivity (1.8) is written on the

assumption that the thickness of the thermal boundary layer in the

body is much smaller than the radius of curvature of the surface of

the body in the vicinity of the stagnation point (line).

System of Equations (1.3)-(1.8) is solved for the following

boundary-value conditions:

1) on the outer edge of the boundary layer

a = = € (i, .. ,,), h = h.,;'- (1.9)

2. from the law of conservation of mass and energy on the surface

of sublimation which is unknown before the solution of the problem

we obtain [15] p (D - v) = p D;

pci (D - v) + pD,, a = plci.D (i (110)

Spc(D-r) +pDizL=0

p (D -r) L(T.) + LeIh - chi)] = - pD,2 Le
i-ior

(D - ' 1 (T.) + Le(h. - * cio~) = 1 pD12 Le ~
i-=|

3) at infinity, in the solid body

T, - _.,



where D is the displacement velocity$ normal to the surface, of the

sublimation front relative to the body and J(To) is the latent heat.

of sublimation which is dependent, generally speaking, on the surface

of sublimation To.

Since hereafter we will trace the stationary regime of subliia-

tion, we will not put forth the initial conditions. The formulated

problem is a parabolic system of nonlinear equations (1.3)-(1.6),

(1.8) of the 2N + 7th order with 2N + 5 conditions (1.9)-(1.11) which

contain, in addition, the two unknown quantities To and D. In order

to complete the problem it is necessary to introduce four additional

relationships which characterize the kinetics of sublimation.

For a sufficiently dense .iscous mixture we can, of course,

assume an equality of tangential velocities at the sublimation front,

i.e.

u =0. (1.12)

It is known [6] that during weak vaporization, i.e., when con-

vection heat transfer from the vaporizing surface .is significantly

lower than molecular heat transfer, the temperature jump is of the

order of X/a (the ratio of the length of free path to the character-

istic dimension of the problem), i.e., T =Ti = To. When convection

heat transfer is. significantly greater than molecular heat transfer,

the temperature jump and deviation of vapor partial pressure Po form

equilibrium p(O)" at the sublimation front will be of the order of v/c

(the ratio of' the vapor flow velocity to the average velocity of the

thermal motion of the molecules). If it is assumed that during

vaporization the thickness of the boundary layer remains small with

respect to the characteristic linear dimension, then v-- V/v ( .

where u. is the velocity of an undisturbed flow, d is the radius of
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curvature of blunting, and v is the kinematic coefficient of viscosity.

Then v/c << 1, (c . 102 to i03 m/sec) and in this case we can assume

T - Tj - To (1.13)

and

P. (0) i ... + P. .,

where the last relationship is the equation of the vapor tension curve;

* and T* are some values of pressure and temperature on this curve;

Pi(i , ... , NI) is the partial pressure of the i-th vapor component.

If hLass concentrations are introduced then the equation of the vapor

tension curve may be written in the form

P. .To NV Ck N'"

1P F)I -11 I W-' 11

For a binary system i, , with use of the van der Waals formula [4]

for the vapor tension curve, Eq. (1.14) is rewritten as

In order to clarify the influence of nonequilibrium vaporization, i.e.,

when Po p(0), in place of (1.15) we will use the fundamental formula

of Knudsen-Langmuir for the mass velocity of vaporization:

. ,D= P. "". -. -p()1. P(O) = P.V(..

where f is the coefficient of accomodation expressing probability that

a molecule of vapor striking the vaporization surface will adhere to it.

Formula (1.16) was derived on the assumption that the flow of mol-

ecules striking vaporizing surface has a maximum distribution for a

quiescent gas with a temperature To.

As has been demonstrated [6], for a mass vaporization rate (if



the temperature Jump is neglected) when using the distribution function

in an approximation of "13 moments" for the calculation of the molec-

ular flux impenging on the surface, a formula analogous to (1.16) is

obtained but in place of f, we must use 2f. Since the law according

to which dispersion of the molecules of vapor takes place is unknown,

we will use the relationship in (1.16). We note that -certain authors

[7] maintain-that f I. i.ntroducing the molar vapor concentration

c* into (1.16) we obtain for a. binary gas-vapor mixture

* c(0)

Henceforth we will consider nonequilibrium vaporization for the case

of a binary gas-vapor mixture. and use-Eq. (1.17). Thus, additional

conditions (1.12), (1.13), (1.14) or, for the, case of nonequilibrium

vaporization, (1.17) 'close the problem. The effect of dissociation

and radiation are not taken into account when formulating theproblem.

It is known [8] that for flow stagnation in the vicinity of the

stagnation point, the influence of equilibrium dissociation and radia-

tion an the magnitude of the thermal flux is small if the temperature

of the wall is lower than the temperature of dissociation (1600-22000K).

But at such wall temperatures sublimation for most materials may attain

a significant value.

2. Coefficient-of Molecular Transfer and Prandt and Lewis Numbers

Generally speaking, accurate expressions for the coefficients of

transfer (coefficients of viscosity, thermal conductivity, diffusion,

and thermal diffusion) for gases and gas mixtures may be obtained by

calculations according to the law of statistical mechanics and the

kinetic theory of gases when the necessary data concerning inter-
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molecular forces is available. However, these rormulas are too com-

plex for practical calculations.

Recently approximation formulas have been derived from exact.

formulas for the coefficients of viscosity [9], and thermal con-

..ductivity [9,10] .of multicomponent gas mixtures, which over a wide.

" range of temperatures [ii] give values differing little from the

• . exact. formulas of the kinetic-.theory of Eases,'.... Comparison-of these

. formulas with experiments [9,10] also gives satisfactory agreement.

* These formulas, in essence, are corrected first approximation obtained.

. from a rigorous kinetic* theory of gases and are very convenient "for

numerical calculations. In order to calculate the coefficient of

-viscosity of: a mixture it.is necessary to know only the molecular

weight and coefficient of viscosity. of the individual components of

the mixture at-the same temperature .at which the gas mixture is found.

In order to calculate the .coefficient of thermal conductivity, we

need to know the molecular 'weight., the coefficients of thermal con-

ductivity of the pure -components, and also either the viscosity of.

the individual components, or the specific heat of the components at

the same temperature.at which the gas mixture is found.

1.. Mixture viscosity. The approximation formula for the coef-

ficient of viscosity of a mixture obtained from the elementary kinetic

theory of gases [12] and verified from considerations of the strict

kinetic theory of gases [19] has the form

__ I,-- G G 1 \-'( " .1." (2.1
N N

Y , e(; k N (2.2)

j I(r,) Y (2.2; ) I (ij) "
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where Li -coefficient of viscosity of the individual components;

(ro)1 = (ro)!l - distance between molecules at which the energy of

interaction is zero; eI = 11- absolute value of the maximum energy.

of .attraction; k - Boltzmann constant; Y(2; 2;.TI) - average reduced

collision cross-section which depends on the temperature ard..potential "

energy of molecular interaction 1(t1 ) - correcting multiplier,. depend-

ent on T 1 , which,' for a wide temperature range, differs from unity..

by less than + '0.08 [13].

When i > 3 the function Y '(2; 2; 7;) is slightly dependent on.

temperature. Therefore the magnitude of.tX, within the -limits of

accuracy of formula (2.1) may be considered constant for the given.

vapor. Actually, for example, for vapors of carbon dioxide Co2  )

and a.r J) we have 13] E(ro)i 3..996A,: (ro)j= 3.617, Li/k ' 1900K

and E, 970K]:
- .2,. 2-. I (T.)

Y("'-";T) = - 0S55 (500-K),:= 0,892 (1000-K), = 0,904 (2000K),

0,907 (4000K)'.

Whence X2  = 0.729 for a mixture of C92 :and air in this temperatureji
range (disregarding dissociation).

Formula (2.1). may then be .written as the product of the .function

which depends only on..temperature times-the function which depends

only on composition:'

= j (T) (c,), .. (2.3)

where g. -(T) is the coefficient of viscosity of some component of the

mixture,-

1 '~c)-~ N ciNM 4 N -

(C Y ( G+" ' .
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2. For the .coefficient of thermal conductivity of the mixture

we will use an approximation formula derived from the expressions of

the rigorous kinetic theory of gases [io]. For monoatomic gases or

for gas mixtures with frozen internal degrees of freedom this formula

has the form

* N N

i-i .j+

A comparison of this" formula with the exact formulas of the kinetic

theory of gases and with experiment, yields satiSfactory agreement [10].

For a .mixture'of polyatomic.gases the.formula takes the form.

N.

i-1 j.,i 4

When X X. Formula (2.6) changes into (2.5). Since.

then from (2..5) and (2.6) it. follows that

,065Gi,. (2.7)

The ratio Xi/X3 for polyatomic molecules with consideration of the

internal degrees of freedom is given by the expression

" -E," = - (. -)xJ" ", E,,= , E1 = 0,115 + 0,354-,

where Ei is a correction multiplier recently refined by Hirschfelder

[14] for gases with polyatomic chemically reactive molecules and

molecules with excited electron levels.

Formula (2.6) may also.be written in the form

I = Ij (7) v (c4), (2.8)

-11-



where Xi(T) is the coefficient of thermal conductivity of some com-

ponent of the mixture

N. C
Y( + , = . ,. ) I..

(C) G~l" j ) = I  .. (2.9) .

3. The diffusion coefficients'in a multicomponent mixture are

expressed by the diffusion coefficients of a binary mixture of all

possible pairs of components of the mixture, by the molar concentra-

tions, and by molecular weights.of the components proportional to the*

corresponding binary diffusion coefficients [13].

4. Schmidt number Sc = IL/pDi 2 .. By virtue of the structure of

Formula (2.3) it suffices to calculate the complex jL/pDi3; then it

iS possible to calculate g/pDij also. We have

= i 1 3 AI,()u+ (2.10)

where • )' (.;,) ..

' ' J= ,.)- (2{,2; -rj) J (Tj) 0. - Aij),

*kT

The product J(Tj) (1 -Ai) is weakly dependent on temperature and com-

position of the mixture [13] and its value varies between 0.97 and 1

for a wide range of temperature and composition changes [13]. The

ratio Y(1.1; 7 )/Y (2.2;T,) is also weakly dependent on temperature

for sufficiently large values of T and T j (r > 3). For example, for

a mixture of molecular hydrogen and air this ratio '. equal to 0.830

for T = 600°K and 0.819 for T = 2400 0K etc. Therefore, the value of

X 2 within the limits of accuracy of Formula (2.3) may be considerediaJj

constant and characteristic for the given pair iJ. For example, the

Schmidt number for a binary mixture will be

-12-



.S 1  ='.: . l - -I
iV jJ (2.11)

+(,~ + Go,_- I, j,

i.e., it will not depend on temperature buy only on composition. The

maximum variation of. Sc with respect to c is equal to

S .C ( C i -0 ) . .t l , ' ,

for example, for vapors of hydrogen and air 0.9.

5. Lewis number, Le =X/pCpDiJ. By virtue of the structure of

Formula (2.8) it suffices to calculate the complex Xj/pcpDij; then it

is possible to calculate Le also. We have
Lei  ;.j 15 R EjD----; 4 _,.-j (2.12)

The maximum variation, of Le for a binary mixture is equal to

LC (Ci O) Cpi -j M( a C4 E;(MV2
MJ ---. j m" .41 (2.13)

P j ,

where cm = 'Mi is the molar heat capacity of the i-th component.pi ciM

Since the first two factors in (2.13) are close to 1, the variation

of Le with a change of composition depends mainly on the ratio of the

molecular weights of the components.

6. Prandtl number, a =i = Sc/Le.

3. Formulation of the Boundary Value Problem for a System of

Ordinary Differential Equations

...-roceeding from the form of the boundary-value conditions (1.9)

and (1.11) and taking into account that the solution yielding a

stationary regime of sublimation must be a type of uniformly propaga-

tion wave, we"will search for a solution of Eqs. (1.3)-(1.8) with

conditions (1.9)-(1.17) in the form:

-13-



for a gas-vapor mixture

8XV(), V~ Y R. T (TO -DO - aL-

" =,,+,*- h q), ( C)., C= + ,(cim- Cio) 91(., 1 N....,N. (3.1)

od-l ) (y- D), D* 7. V POD

for a solid body

7, T_ _. 6 (il), 'h - . (,. Di), (3.2)

where K is an arbitrary constant, the. subscript 0 refersto unknown

values of the parameters at the sublimation front and the subscript

a refers to conditions, outside the boundary layer.

The law of motion of the. sublimation front for a stationary regime

of vaporization will be

yo-D, (3.3)

where D is not known before solution of the problem of the displace-

ment velocity of the sublimation front.

Substituting Eqs. (3.1)-(3.3). into Eqs. (1.3)-(1.8) and con-

ditions (1.9)-(1.17) we obtain for determination of the four functions

T, z, g = g(i = 1, ... , N); 01 and the parameters D*, 00 = To/T,

cio(i = 1, ... , N) the following nonlinear boundary-value problem:

K (:p Jp~ ,jh0  A 1"= - pCp-19- 1 . C L + 1  -P.] .r-. h, 0
T, CPi~ h" ~ J ho ( 3.4)
K (pp Se-g')"+ n(g' .= 0,"

-t.l ' + , - - 1 -' o,,}' + n z,', = o9

,9



Q (6 J ,V) ( OA .
J (3.5)

g z= .S (0) - .(3.6)

(0r'()=0, ()=: (0) = 0, i I, (0) D 0 (0) O.,
fn- ef.- nt (0) + (0). 0.

_(0 +K g, . 3T

nup (0)~ T.~) + Le,, (14 K & )+;'(h.- Z, (0).o I,
(3.8)

*P Pooo)..i (32

For nonequilibrium vaporization in.the case of a binary gas-vapor

mixture with the use of (1.17) in Place of (3.8) weobtain

nq (03.10)(P NO 0 T. T@ (1

.(3.1)

FIL. 0 . oo t " 10 ~ '-

PIS ' - = Poo--,

The system (3.41)-(3.5)* is a system of nonlinear ordinary differential

equations of the 9th order with N + 2 unknown parameters c, (i-

969p N)w D and Too which enter into conditions (3.T), (3.8) or (3.10).
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Relationships (3.6)-(3.10) give exactly N + 11 conditions. Consequently

it may be expected that the solution of problem (.3.4)-(3.10) is

determined uniquely.

After solution of the problem, the mass velocity of sublimation

is determined by the formula

ploD =ploDOVv.- ny ()p. 1/" j '  =

,-0 p,-o - (3.12)
=- , (o0) / F ,..

The temperature profile in the body is found after this in quadratures

[15]:

Q(,)- Q( ' (3.13)

From (3.10) it is possible, after solution of the problem, to

calculate the deviation of the vapor partial pressure Po over the

sublimation surface form the saturation pressure P(O) at a tenpera-

ture TO:

R ( ) I p - -/ 1- - J i'9

We will evaluate the order of the parameter z. For TO -1000 0 K,

v. ~ 1 cm2/sec, p. - 1O-" gr/cm3 , ~ losec- (with u0 _ lo3 /sec,

d 1 ), To - 10000 K and p(O) - 100 mm Hg we obtain - 10 - 5 / 2 f-1 .

Since 1,(o)l < 1 for moderate vaporization, then R 1 + 10- 3 f- 1 .

Consequently for f > 0.1 it is possible to obtain with a high accuracy

the equilibrium vaporization and to use Eq. (3.8). For f < 0.01 It

is necessary to calculate nonequilibrium vaporization and to use

Eq. (3.10). In this case the coefficient of accomodation must be

known exactly.

-16-



74. The Case of Le -1 (a -Sc)

This case is interesting in that a number of conclusions may be

reached before complete solution of problem (3.4)-(3.10). Since for

many mixtures the Lewis number is close to unity (2), these conclusions

will be of practical interest.

Actually, if sublimation proceeds according to diffusion kinetics

(condition 3.8) and Le A, 1, then z(n) g(n) and determination of the

condition and temperature at the sublimation surface leads to a solu-

tion of the final system of N equations

..

C" 0 N = .

= -- i~t..N-i )

ci, = O I>." ) ,v = - o,

k-1

together with the equation of. the vapor tension curve (3.8) for N + 1

unknown cio(i - 1, .. ,, N) and T0 .

For a binary mixture (ci = c, c - - c, cs  1) the concentz'a-

tions of vapor and temperature at the sublimation surface are determined

from a system of two equations

•h -o hJrp, .- e- "'" 1. C (4.2)

2 (TO) -co 1P.. It U, r.

It is interesting to note that these results do not depend on the

character of the dependence of transfer coefficients 'on temperature

and composition and are associated only with the assumption that Le -

It follows from (4.1) and (4.2) that "boiling" (E.= 1 9io .)

on the surface of the body in the case of equilibrium vaporization is

attained only in the limiting case of an infinitely large thermal flux

-17-



from the gas. From (3.7) and (3.10) it follows that this fact does not

depend on the assumption that Le - 1 and is associated only with the

assumption that sublimation proceeds according to diffusion kinetics.

If sublimation is nonequilibrium (f << 1) and the coefficient of

'accomodation is known, then when "boiling" is attained, a solution to

the problem (3.4)-(3.10) may be obtained in final form.

Actually for "boiling" p(0) - Poo is the stagnation pressure,

fromwhich, if the pressure at the stagnation point Poo is taken as

the characteristic pressure p., we will obtain To = T Too, where

Too is the temperature on the vapor tension curve which corresponds

to.the pressure of the vapors Poo. From the finst equation in (4.2),

substituting in the left hand part To - Too, we find the concentration

of Vapors co on the sublimation surface. From (3.10) and the first

equation in (4..2), assuming for simplicity that c. = 0, we obtain the

rate of sublimation in the final form:

7 ,,,] -, ( 3)

where Cpj is the specific heat for a constant pressure of the incident

flow.

The mass velocity of sublimation will be

f -- V- (r. - To. )  Ali -1( .4:,0b ' j 1 Ti [i
- (Too +,r'CToo [Q (o) - Q(i)] M1 J "

The temperature profile in the body is found from Formula (3.13).

5. Numerical Solution of the Problem for a = 0.7; 1 and Sc = 1

Solution of Problem (3.4)-(3.10) in the general form is associated

with numerous calculations owing to numerous defining parameters;

-18-



11. a; Sc, N - -). C

Pic , . P (0) .

and dimensionless functions mu -- 11(g, z), Q (.,), V(TOI), I (T,)h1.

We therefore made certain simplifications which reduce the number of

these parameters.

First we will assume that

t
- Le@ L e;~o~ 1)T (5.2)

This corresponds to the case where Le 1 or where the components of

the mixture have similar specific heats at'a constant pressure (C 2

C cro or when sublimation is weak (ci << 1). Since for a large-

number of gaseous mixtures these assumptions are always fulfilled to

a certain degree. simultaneously, then for these mixtures assumption

(5.2) will be valid.

Using Formula (2.3) for the viscosity of the mixture and

Sutherland's formula for the viscosity of the J-th component, we obtain
-- Ip w(C,) Ag * (:0 + I I + (.0-I) ()"'JUP = - = 77' ,, ( ) . +(.o - , .. , 5

,= s, ,. A,

where Sj is the Sutherland constant and is equal to 107 for T = 970K,

180 for T = 970°K and 823 for T = 48500K [13]. During vaporization

of most condensed media in air we have cpo/cp > 1, M/Mo < 1. The

ratio (c )/4p(C. is close to unity. Therefore, the product of

the first three factors in (5.3) is close to unity and for certain

mixtures is a slightly varying function of the composition (this

function may be calculated on the basis of the formulas of (2).

Therefore, we set this product equal to some average constant value

and designate it by
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where the upper bar indicates the average value of the parameter

between its value at the outer edge of the boundary layer and at the

sublimation surface. Obviously the parameter K is unknown until

solution of the problem. Taking into account also that cPo C p we

obtain

iL~~-- '"(), 0 (;) , (a',(°  [ + (s 2I;.-
++- •(5.5)

and finally

•_- -- + )i - . (5.6)

We note that this approximaticn will effect mainly the value of

9"(0)- a. But since g'(O) and z'(O) - al/3 it follows from an

asymptotic solution (6) that the simplification (5.6) has little effect

on the product of g'(O) and z'(O), through which the rate of sublima-

tion and temperature at the sublimation front are determined from (3.7).

After these assumptions, System (3.4) is rewritten in the form

( "+ nw" = 40, , - -- -j S. (5.7)

(4 ')' + liqz' = 0, (0 So- g')' + nqg' 0 0. (5.8)

A formal solution of the last two equations in terms of the constants

a and Sc with regard to (3.6) and (3.7) will be

z ; (in:St. (5.9)

where

• • ICa N; :6, a) CxP(

-20-



Determining zt(0), and g'(0) from (5.9) we obtain from (3.7) N tran-

scendental equations

r o;, -a). - . (5.10)

ha- r oN(5.11)

If sublimation proceeds according to diffusion kinetics (f > 0.1),

then, adding the first Eq. (3.88) to (5.10) and (5.11) We obtain a

system of N + 1 equations for the determining of N + 1 unknowns:
a, Zo, c: o (i = is'.., N - 1).

If sublimation is nonequilibrium, then, adding Eq. (3.10) to the

system (5.10), (5.11) for N = 2 we obtain a system of three equations

for the determination of three unknowns: a, Zo and Co.. For an actual-

solution of systems (5.10), (5.11) and (3.8) it is necessary to compute

the function u(0; T; zo, a). For Sc = 1 and n = 1 the system (5.8)

with the boundary conditions

q(o)=a < 0, V'(o)=:(o)=g(O)= 0, q'(o)=z(o)=g(OC)=. (,5.12)

coincides with a boundary-value problem flow past an infinite cylinder

in the vicinity of the stagnation line in the presence of slip and.'

injection and was solved numerically by Beckwith [16] for a = 0,

-0.5, -1, for zo = 0, 0.5, 1 for two values of Prandtl numbers a = 0.7

and 1. Numerical integration was performed for O(z) - , So = 0.2

and 0.02. In addition, for a - 0 the results of numerical integration

for the axisymmetrical case (n - 2) with a = 0.7 and 1 are presented

in this work for several values of the parameters Zo.

The results of Bechwith's calculations [16] for the case of a

plane, supplemented by numerical integration of the system (5.8) for

the axisymmetrical case where a - -0.5, -1, o -.0.7, 1, and Sc - 1 are
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presented in Tables 1-k. Thus, for Sc - 1 and o = 0.7, 1 System of

Eqs. (5.10), (5.11), (3.8) or (5.10), (5.11), (3.10) together with

Tables i-4 solve the given problem in the plane and axisymmetrical case.

TABLE 1

n =1 (plane case)

, ".0.7

0 0 0.04S9 O0.071 - -

0 0.05 - 0.;;91 0.4576
0.5 o.9,j8 0.,u 0.9109 o.894
1 1.2326 1.2326 1 .2326 1.2326

o 0.:067 0.2988 -
-0.5 0.05 - - 0.3858 0.1949

0.5 . 0.6G9 I0.610 0.6-.30 0.8276
0 0.9W52 0.9692 0.9692 0.962
0 0.0474 0.0705 -

-1 0.05 - - 0.1572 -
0.5 0.4519 0.4551 0.445S 0.4180
I 0.7581 0.7566 0.758 0.7566

TABLE 2

n = 1 (plane case)

ee (oo, .) -1 ,, ,em
z"O, | I z'O fO z"(O) fo

c.,j a-0.7 0. 7 0.7.,+ .2 0 - .7. j ,(e .)

0 0.067 043C2 1.140 -- - - 127
.0 -- 0.4 IW 1.147 0.2969 1.160 -

0..5 _,2 1 4mr, G. : o..,,4s4 1.15o 0.4317 1.153 1,.139
1 0. 57( o.,,05S 1.152 0.4058 1.151 o.48 1A51 .143
0 0.2031 0.210.3 -.S39 - - - 0.9818

-0.5 0.05 - .452 0.9751 0.1025 0.8663 -
.0.5 0.25'&1 0.2600 0.9VG °0.'°243 0.S712 0.2295 0.9791 1.015

o.- , 0.29W 0.29,A 1.O5 0:2934 1.005 0.29,4 .o 1.028
0 0.0211 0.0496 0.57A5 -- 0.841

- 0.0819 0.-52 0.04?, - -
0:5 0.081-3 0.1112 0.7119 ;.1 .010 0.732 0.0932 0.7221 0.892
1 -0.168 0.1457 0.806 0.1157 0.Su16 0. 1457 0.6016 0.918
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TABLE 3

n - 2 (axisymmetrical case)

le 40)-4. gr i0) - a.
0-,I! I -0.7

0)-a o -0.7 o 2 I 6 0.02

0 0.)S217 0.780 0.05 0.8G73 -
0.5 1.07G .i.o 0.06 - 0.5820
0.6 - 1.141 0:2 - 0.7483
o.8 1.2,68 0.5 1.024 0.9950

1 1.32 .312 1.312 1.312

o 0.2 0.240 - - -

0.5 0.551 0.446 - - -
-0.5 0.8 0.Th0 0.7"2 - - -

0 0.805 0. 70 2 - - -

-I 0.5 0.281 0.285 - - -

1 0.491 0.491 - - -

TABLE 4~

n = 2 (axisymmetrical case)

I ' I "-I , e
IL0

- _ __Ii.. I:-. -0 .7 - ~. 0.2 - .-

0 0OC.O J 0. 5905 1.1.37 I 0.03 0.6445 - -

0.5 0.7;1.12 0. r0fl10 1.145 0.06 -

0 0.6 - 0.6;55 - 0.2
0.8 0. 7 .n4) 0. 65-50 - j 0.5. OC.S47 1.146 1,149.
I 0.7C21 0.662 1.153 1 0.7G21 - -

00 9 .0 -0-2

05 0.22",, i.25
-0. 5 . '_, 1

1 0,252 0-.276
0 0.623 -

--1 0.5 • ..:
1 O.0081

6. Solution of the Problem for Any Prandtl and Schmidt Numbers

In order to obtain a solution to the problem for any values of

a and Sc we will evaluate the integrals which enter into system (5.10)j

(5.11) by the asymptotic method. Assuming that the parameter T o

(or Sc) is sufficiently large and that parameter t is sufficiently

small (a - 1/7) we will have
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id(W T :. ) CX -1T p(i) drj) dr ex -vi n---() (6.1)
0 @ 0

where
() = q (q) dr - a, -$ , C. 1.,

a :-- 15~4 (- + iisa)-(i -- ).

¢ = 6!

,.i U, 2 - a ,:++.ln+:f( 6)]+: a..=.12(1 + +o)(__s6).2

a = " (0), ' =(0).

Changing under the integral in (6.1) to the variable of integra-

tion z we obtain [17]

Co O
fi -

z)(c ,: .ca =c cn ~d'z-\d. r ~2(nr)
0 0,0

-y4 (.(i ,+,,rtm+1, (6.3)

where

d~~.Jep(u~z~- /.()ni- S/* %m1

Fr om whch, using (6.2) , obtain

1 , . .G -nTa,

.i,' (:.-- ,, _: +. a)
2  , (:° -" n2a) - - zr) :Z ,

I GO i, ~ 204

~ '~:~- In) - 7ni's (:, 4.nsa)' flTa!12@O-'lnf)(1-z)s
6 "a 72- 15. -

_. (:a- ,7'12 ": 'z+ - 1="..n : = ) ( - , o
: -- fl)~ ' " -- na:- [, (-- ) z--)

- G bi a Abz 4

d )4 4 - n%' 5(:a ,7 + n 2 nis (I + s) :0

72z72.as
n"i'% !n2 (:0 + na) -

244
:,.mT <:,-- z,=a)' ,n-'r (:o + flaf) !'n= (:o ±" ,,)- (1 - z..) :j]

_. T2 I(2--)'a --":!s(:s++"s)2.ns(+)(!--'.o)'4I 3. : ( + n,)'

724a 128.243 "-a
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I( (;o+ i ad) Ina (s, +n2)-0 - Q:.
-- --..'-- ' (.- + , -(@ - .) :(6.4.

,.3 (5n - 8) as+a fn%2' +:4 (41s - 6)) +:.9al - 00 z(1 + a + e) (1-I.)

Since zo enters into the coefficients da, as, ... then expansion of

(6.3), generally speaking, yields a transcendental equation for the

determination of a in terms of T, zo and a. But since the main con-

tribution to the value of the function a)(m; T, Zo, Q) is introduced

by the first terms of the series, then substituting d2 , ... , z

=3 (ana/6)1/3r-1(), in the coefficinets, sufficient accuracy can be3
obtained. Due to the weak dependence of the magnituded of a on a

(see Tables 1 and 3) in (6.3) the value of a may be substituted when

a - 0.7. Calculations according to Formula (6.3) indicate that for

a = 0 and T > 0.5 the first three terms yield a value of co(.; T, Zo, 0)

with an error less than 1% (see Ref. 18). When a = -0.5 it Is neces-

sary to calculate five terms of the series (6.3) in order to obtain an

error not exceeding 1%.

By expanding (6.3) and limiting ourselves to the first term, we

obtain

-1(0 W '.I. o ) G 4 Z'

, , , (6.5)

Table 2 gives for comparison the values of gI(0)/zl(O) as cal-

culated according to Formula (6.5). When lal K 0.5, Formula (6.5)

gives an error not exceeding 4.5%. for all zo. When a - -1 the error

reaches a significant value and in Formula (6.5) it is necessary to

take into account subsequent terms. From the system (5.10), (5.11)

it follows that the case of a - -1 corresponds to "low-enthalpy3
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materials, I.e., materials having (h - ho)/ 1 and a high vaporiza-

tion rate. For example, when a - 1 n - 1(h - ho)/- w(a, a, zo, -1)

when zo - 0.5 and 47.7 when zo - 0. Thus, this case is of little

practical interest and we will correct formula (6.5) for a ( -0.5.

Using asymptotic representation of (6.5), Eq. (5.11) may be

written in the form

Iwhere (a, SoS.) I + 0,508(- %

- -.

The System of Eqs. (5.10), (6.6) and (3.8) or (5.10), (6.6) and (3.io)

.determines a solution to the problem for any a and Sc.

7. Necessary and Sufficient Conditions for Boiling at the

Sublimation Surface

If vaporization is equilibrium, then, as was pointed out in 4,

boiling on the sublimation front is attained when there is Infinitely

of large thermal fluxes from the gas.

We will now examine the conditions of reaching the boiling point

.during nonequilibrium sublimation (condition 3.10). During boiling,

the equilibrium vapor pressure p(0) becomes equal to the external

pressure Poo and the temperature at the sublimation front reaches a

maximum value To = Too for a given external pressure Poo at the stagna-

tion point. Assuming then that Po - Poo and To - Too in (3.i0) and

eliminating the parameters a and co from (5.10), (5.11) and (3.10),
we obtain the necessary and sufficient conditions of boiling or attain-

ment of maximum temperature at the sublimation front for a binary

mixture (C - 0, K - 1, Le - 1) in the form
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(re i L_ __ (7.1)

the value of co which enters into the parameter.

S .To e- .0

being determined from the ratio

c = (T.-.To) (7.2)
2 (T")

from which it follows that there are always finite values of determin-

ing parameters, satisfying condition (7.1) at which boiling ensures.

In fact, when the parameter (h. - h;o)/o(T0 ) is increased from 0 to

4, the left-hand part of Equality (7.1) increases monotonically from

0 to a while at the same time the right-hand part decreases monoton-

ically from xo(o a, zo, -(ne)-1 ) > 0 to ow(-p; a, zo, 0) <u-. Con-

sequently for given values of the parameters a, MJ/Mj, cPi/c p and

a there is an unique value of the parameter (h: - hjoo)/.Zat which

boiling sets in.

If Le / 1 then the necessary and sufficient condition of boiling

is obtained by eliminating parameter a from the system of two trans-

cendental equations (c. - 0, K - 1):

h "/ Sc] o (oo; a, zoa

,,r +- h,,, Se (a, +, , £7 0

which has a unique solution.

When the condition (7.1) is satisfied, the velocity and mass

velocity of sublimation are found from (4.3) and (4.4) respectively.

When Le / 1 the velocity and mass velocity of sublimation during

boiling may be obtained according to the formulas (if for simplicity

*FTD-TT-63-311/i+2+4 -27-



we set I a 1)

D-" +. j'

p1 -PO 1 (ff . ) (T+ppcT IQ (03o) -Q (I)A 01ploD =--poo + r + ,._,[(O) Q, L e%'
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